Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(16): 4018-4028, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38578014

RESUMO

On-demand controlled drug release holds great promise for cancer therapy. Light-degradable nanocarriers have gained increasing attention for designing controllable drug delivery systems owing to their spatiotemporally controllable properties. Herein, a highly luminescent and light-degradable nanocarrier is constructed by intercalating glutathione-capped gold nanoclusters (AuNCs) into zeolitic imidazolate framework-8 (ZIF-8) via competitive coordination assembly, named AuNC@ZIF-8, for light-triggered drug release. Glutathione-capped AuNCs and 2-methylimidazole (MIm) competitively coordinated with Zn2+ to form AuNC@ZIF-8 using a one step process in an aqueous solution. Specifically, the obtained AuNC@ZIF-8 has a high quantum yield of 52.96% and displays a distinctive property of photolysis. Competitive coordination interactions within AuNC@ZIF-8 were evidenced by X-ray diffraction and X-ray photoelectron spectroscopy, in which Zn2+ strongly coordinated with the N of MIm and weakly coordinated with the carboxyl/amino groups in the glutathione of AuNCs. Under light irradiation, the Au-S bond in AuNCs breaks, enhancing the coordination ability between carboxyl/amino groups and Zn2+. This collapses the crystal structure of AuNC@ZIF-8 and causes subsequent fluorescence quenching. Additionally, AuNC@ZIF-8 is successfully employed as a luminescent nanocarrier of anticancer drugs to form drug-AuNC@ZIF-8, in which three typical anticancer drugs are selected due to different coordination interactions. The obtained smart drug-AuNC@ZIF-8 can be effectively internalized into HeLa cells and degraded in response to blue light, with negligible dark cytotoxicity and high light cytotoxicity. This study highlights the crucial role of competitive coordination interactions in synthesizing functional materials with fluorescence efficiency and photolytic properties.


Assuntos
Liberação Controlada de Fármacos , Ouro , Luz , Nanopartículas Metálicas , Estruturas Metalorgânicas , Ouro/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Humanos , Nanopartículas Metálicas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Células HeLa , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Tamanho da Partícula , Propriedades de Superfície , Doxorrubicina/química , Doxorrubicina/farmacologia
2.
Foods ; 9(1)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936596

RESUMO

Mangoes (Mangifera indica L.) are wildly cultivated in China with different commercial varieties; however, characterization of their aromatic profiles is limited. To better understand the aromatic compounds in different mango fruits, the characteristic aromatic components of five Chinese mango varieties were investigated using headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry-gas chromatography-olfactometry (GC-MS-O) techniques. Five major types of substances, including alcohols, terpenes, esters, aldehydes, and ketones were detected. GC-O (frequency detection (FD)/order-specific magnitude estimation (OSME)) analysis identified 23, 20, 20, 24, and 24 kinds of aromatic components in Jinmang, Qingmang, Guifei, Hongyu, and Tainong, respectively. Moreover, 11, 9, 9, 8, and 17 substances with odor activity values (OAVs) ≥1 were observed in Jinmang, Qingmang, Guifei, Hongyu, and Tainong, respectively. Further sensory analysis revealed that the OAV and GC-O (FD/OSME) methods were coincided with the main sensory aromatic profiles (fruit, sweet, flower, and rosin aromas) of the five mango pulps. Approximately 29 (FD ≥ 6, OSME ≥ 2, OAV ≥ 1) aroma-active compounds were identified in the pulps of five mango varieties, namely, γ-terpinene, 1-hexanol, hexanal, terpinolene trans-2-heptenal, and p-cymene, which were responsible for their special flavor. Aldehydes and terpenes play a vital role in the special flavor of mango, and those in Tainong were significantly higher than in the other four varieties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...